Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(6): e2318174121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289955

RESUMO

Atomically dispersed catalysts are a promising alternative to platinum group metal catalysts for catalyzing the oxygen reduction reaction (ORR), while limited durability during the electrocatalytic process severely restricts their practical application. Here, we report an atomically dispersed Co-doped carbon-nitrogen bilayer catalyst with unique dual-axial Co-C bonds (denoted as Co/DACN) by a smart phenyl-carbon-induced strategy, realizing highly efficient electrocatalytic ORR in both alkaline and acidic media. The corresponding half-wave potential for ORR is up to 0.85 and 0.77 V (vs. reversible hydrogen electrode (RHE)) in 0.5 M H2SO4 and 0.1 M KOH, respectively, representing the best ORR activity among all non-noble metal catalysts reported to date. Impressively, the Zn-air battery (ZAB) equipped with Co/DACN cathode achieves outstanding durability after 1,688 h operation at 10 mA cm-2 with a high current density (154.2 mA cm-2) and a peak power density (210.1 mW cm-2). Density functional theory calculations reveal that the unique dual-axial cross-linking Co-C bonds of Co/DACN significantly enhance the stability during ORR and also facilitate the 4e- ORR pathway by forming a joint electron pool due to the improved interlayer electron mobility. We believe that axial engineering opens a broad avenue to develop high-performance heterogeneous electrocatalysts for advanced energy conversion and storage.

2.
Angew Chem Int Ed Engl ; 63(5): e202317816, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38082536

RESUMO

Breaking the trade-off between activity and selectivity has perennially been a formidable endeavor in the field of hydrogen peroxide (H2 O2 ) photosynthesis, especially the side-on configuration of oxygen (O2 ) on the catalyst surface will cause the cleavage of O-O bonds, which drastically hinders the H2 O2 production performance. Herein, we present an atomically heteroatom P doped ZnIn2 S4 catalyst with tunable oxygen adsorption configuration to accelerate the ORR kinetics essential for solar-driven H2 O2 production. Indeed, the spectroscopy characterizations (such as EXAFS and in situ FTIR) and DFT calculations reveal that heteroatom P doped ZnIn2 S4 at substitutional and interstitial sites, which not only optimizes the coordination environment of Zn active sites, but also facilitates electron transfer to the Zn sites and improves charge density, avoiding the breakage of O-O bonds and reducing the energy barriers to H2 O2 production. As a result, the oxygen adsorption configuration is regulated from side-on (Yeager-type) to end-on (Pauling-type), resulting in the accelerated ORR kinetics from 874.94 to 2107.66 µmol g-1 h-1 . This finding offers a new avenue toward strategic tailoring oxygen adsorption configuration by the rational design of doped photocatalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...